Spatially Coherent Activation Maps for Electrocardiographic Imaging

IEEE Transactions on Biomedical Engineering2017Josselin Duchateau, Mark Potse, Remi Dubois

IEEE Transactions on Biomedical Engineering, 2017, 64, pp.1149-1156. ⟨10.1109/TBME.2016.2593003⟩

Objective: Cardiac mapping is an important diagnostic step in cardiac electrophysiology. One of its purposes is to generate a map of the depolarization sequence. This map is constructed in clinical routine either by directly analyzing cardiac electrograms (EGM) recorded invasively or an estimate of these EGMs obtained by a non-invasive technique. Activation maps based on noninvasively estimated EGMs often show artefactual jumps in activation times. To overcome this problem we present a new method to construct the activation maps from reconstructed unipolar EGMs. Methods: On top of the standard estimation of local activation time from unipolar intrinsic deflections, we propose to mutually compare the EGMs in order to estimate the delays in activation for neighboring recording locations. We then describe a workflow to construct a spatially coherent activation map from local activation times and delay estimates in order to create more accurate maps. The method is optimized using simulated data and evaluated on clinical data from 12 different activation sequences. Results: We found that the standard methodology created lines of artificially strong activation time gradient. The proposed workflow enhanced these maps significantly. Conclusion: Estimating delays between neighbors is an interesting option for activation map computation in ECGi.

Josselin Duchateau, Mark Potse, Remi Dubois. Spatially Coherent Activation Maps for Electrocardiographic Imaging. IEEE Transactions on Biomedical Engineering, 2017, 64, pp.1149-1156. ⟨10.1109/TBME.2016.2593003⟩ (lien externe). ⟨hal-01386890⟩ (lien externe)

Citations

APA

Duchateau, J., Potse, M., & Dubois, R. (2017). Spatially Coherent Activation Maps for Electrocardiographic Imaging. In IEEE Transactions on Biomedical Engineering. https://hal.inria.fr/hal-01386890/file/duchateau-coherent.pdf

MLA

Duchateau, Josselin, et al. “Spatially Coherent Activation Maps for Electrocardiographic Imaging.” IEEE Transactions on Biomedical Engineering, May 2017, https://hal.inria.fr/hal-01386890/file/duchateau-coherent.pdf.

Chicago

Duchateau, Josselin, Mark Potse, and Remi Dubois. 2017. “Spatially Coherent Activation Maps for Electrocardiographic Imaging.” IEEE Transactions on Biomedical Engineering. https://hal.inria.fr/hal-01386890/file/duchateau-coherent.pdf.

Harvard

Duchateau, J., Potse, M. and Dubois, R. (2017) “Spatially Coherent Activation Maps for Electrocardiographic Imaging,” IEEE Transactions on Biomedical Engineering. Available at: https://hal.inria.fr/hal-01386890/file/duchateau-coherent.pdf.

ISO 690

DUCHATEAU, Josselin, POTSE, Mark and DUBOIS, Remi, 2017. Spatially Coherent Activation Maps for Electrocardiographic Imaging [en ligne]. May 2017. Disponible à l'adresse : https://hal.inria.fr/hal-01386890/file/duchateau-coherent.pdf